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A characteristic functional approach is suggested for Le´vy diffusion in disordered systems with external
force fields. We study the overdamped motion of an ensemble of independent particles and assume that the
force acting upon one particle is made up of two additive components: a linear term generated by a harmonic
potential and a second term generated by the interaction with the disordered system. The stochastic properties
of the second term are evaluated by using Huber’s approach to complex relaxation@Phys. Rev. B 31, 6070
~1985!#. We assume that the interaction between a moving particle and the environment can be expressed by
the contribution of a large number of relaxation channels, each channel having a very small probability of
being open and obeying Poisson statistics. Two types of processes are investigated:~a! Lévy diffusion with
static disorder for which the fluctuations of the random force are frozen and last forever and~b! diffusion with
strong dynamic disorder and independent Le´vy fluctuations~Lévy white noise!. In both cases we show that the
probability distribution of the position of a diffusing particle tends towards a stationary nonequilibrium form.
The characteristic functional of concentration fluctuations is evaluated in both cases by using the theory of
random point processes. For large times the fluctuations of the concentration field are stationary and the
corresponding probability density functional can be evaluated analytically. In this limit the fluctuations depend
on the distribution of the total number of particles but are independent of the initial positions of the particles.
We show that the logarithm of the stationary probability functional plays the role of a nonequilibrium ther-
modynamic potential, which has a structure similar to the Helmholtz free energy in equilibrium thermodynam-
ics: it is made up of the sum of an energetic component, depending on the external mechanical potential, and
of an entropic component, depending on the concentration field. We show that the conditions for the existence
and stability of the nonequilibrium steady state, which emerges for large times, can be expressed in terms of
the stochastic potential. For Le´vy white noise the average concentration field can be expressed as the solution
of a fractional Fokker-Planck equation. We show that the stochastic potential is a Lyapunov function of the
fractional Fokker-Planck equation, which ensures that all transient solutions for the average concentration field
tend towards a unique stationary form.

PACS number~s!: 05.40.2a, 64.60.Ht, 05.70.Ln, 68.35.Fx
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I. INTRODUCTION

The study of Le´vy diffusion in condensed matter starte
over 20 years ago with the classical papers by Eliot Mont
and his co-workers on disordered systems@1#. In the mean-
time the study of this subject has become an active are
applied statistical physics. The study of Le´vy diffusion is of
interest in connection with a large class of phenomena fr
physics, chemistry, and biology, ranging over the study
vortex motion in high-temperature superconductors, mov
interfaces in porous media, random field magnets, s
glasses, the propagation of electromagnetic or acou
waves in random media@2–4#, random-phase modulation i
spectroscopy@5#, reaction kinetics in disordered system
@6,7#, the structure of biological organs@8#, or the growth of
a population in a random environment@9#.

There are two different types of Le´vy diffusion; both
types were introduced in the original papers by Montroll a
collaborators@1#. The first type corresponds to a continuo
time random walk for which the probability density of th
waiting time between two jumps is of the Le´vy type and has
infinite moments. In this case the probability density of t
position of the moving particle is not of the Le´vy type and
PRE 621063-651X/2000/62~2!/1743~21!/$15.00
ll

of

m
f
g
in
tic

d

the moments of the position are generally finite. This type
process has been extensively investigated in the literatur
second type of process corresponds to a random walk
which the length of an individual jump obeys Le´vy statistics
and the moments of the displacement vector are infinite
this second case, it has been pointed out in the literature@10#
that for a particle with a finite mass the Le´vy picture is
wrong for most physical transport models, for which a p
ticle must have a finite velocity of propagation. With a fe
exceptions@11#, until recently little attention has been paid
this second type of process. A systematic study of rand
walks with individual jumps obeying Le´vy statistics has been
initiated by Fogedby@12#. He pointed out correctly that fo
these processes the classical approach for studying diffu
in terms of the Langevin-Einstein approach breaks down
cause both the second moment of the position of a mov
particle as well as its average kinetic energy are divergen
order to overcome these difficulties he has developed an
ternative description based on the use of fractional calcu
and of the renormalization group@12,13#. An interesting ap-
proach is based on the use of a fractional Fokker-Pla
equation@14#.

It has been recently pointed out that@13# in the presence
1743 ©2000 The American Physical Society
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1744 PRE 62VLAD, ROSS, AND SCHNEIDER
of a force field, Le´vy diffusion leads, in the limit of large
time, to nonequilibrium stationary profiles, which have
stable Lévy shape and do not obey Maxwell-Boltzmann s
tistics. The emergence of nonequilibrium distributions
large times seems to be a generic feature of disordered
tems. A similar nonequilibrium distribution has been fou
by us in the case of reversible rate processes in systems
dynamic disorder@15#.

The purpose of the present paper is to investigate the
sibilities of building a thermodynamic formalism for thes
types of nonequilibrium states based on the study of conc
tration fluctuations. We compute the probability dens
functional for a system with Le´vy diffusion and define a
stochastic potential proportional to the logarithm of th
probability density functional. We are going to show that th
nonequilibrium potential may serve as the basis for deve
ing a nonequilibrium thermodynamic formalism which is
generalization of the thermodynamic and stochastic theor
nonequilibrium processes by Ross, Hunt, and Hunt@16–20#.

Our approach is based on two different mathemat
techniques. The first technique is the random-channel
proach for the study of independent fluctuations in syste
with static disorder introduced by Huber@21# in 1985 in the
context of the theory of relaxation. Huber’s approach h
been recently generalized for interacting fluctuations as w
as for systems with dynamical disorder@22–24#. The second
technique is the characteristic functional approach to
theory of random point processes@25–27#.

The structure of the paper is the following. In Sec. II w
give a general formulation of the problem of Le´vy diffusion
based on the use of the Huber approach. Sections III an
deal with the one-particle formulation for systems with sta
disorder and for systems with Le´vy white noise, respectively
In Secs. V and VI many-body formulations of the theory a
presented both for static disorder and for systems with L´vy
white noise. In Sec. VII the many-body approach is used
extending the thermodynamic and stochastic theory of n
equilibrium processes by Ross, Hunt, and Hunt to the cas
Lévy diffusion.

II. FORMULATION OF THE PROBLEM

We study the motion of a large number of identical p
ticles in a disordered system and assume that these par
do not interact with each other. They only interact with t
environment and with an external potential field. In gene
the equation of motion of a particle can be expressed b
generalized Langevin equation of the type

m
d2

dt2
r ~ t !1E

t0

t

g~ t2t8!•
d

dt8
r ~ t8!dt8

5Fth~ t !1Fdis~ t !2¹U~r !, ~1!

wherer (t) is the position vector of the particle at timet, m is
the mass of the particle,g(t2t8) is the tensor of friction
coefficients,Fth(t) is a thermal random force responsible f
ordinary diffusion,Fdis(t) is a random force expressing th
interaction of the particle with the random medium andU(r )
is a potential field. For simplicity in this article we limi
ourselves to the study of one-dimensional diffusion and
sume that the motion of particles is overdamped, that is,
-
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inertial term in Eq.~1! can be neglected. We also assume t
the friction is without delay and that the random forceFdis(t)
generated by the random environment is much bigger t
the thermal random forceFth(t) responsible for the ordinary
diffusion. We also assume that the mechanical poten
U(r ) is harmonic. Under these circumstances the evolut
equation of a moving particle reduces to

g
d

dt
x~ t !5Fdis~ t !2

]

]x
U~x!, ~2!

with

U~x!5 1
2 kx2. ~3!

The fluctuations of the random forceFdis(t) are described
by using a generalized Huber approach. The random fo
Fdis(t) is made up of the additive contribution of a larg
numberN of individual components. Each individual com
ponentgm(t) is a random function corresponding to a give
relaxation channel

Fdis~ t !5 (
m51

N

gm~ t !. ~4!

The physical model for the Le´vy diffusion is essentially a
model of Brownian motion for which the contribution of a
individual event~a collision! to the random force is a sto
chastic function, which obeys fractal statistics. The statis
of individual events can be conveniently expressed in te
of the Huber’s theory of complex relaxation@21–24#; in this
context we formally attach a channel to each individual~col-
lision! event. Both the numberN of channels and the contri
butionsg1(t),...,gN(t) of the different channels are random
their stochastic properties can be described by a set of g
canonical probability density functionals

Q0 ,Q1@g1~ t !#D@g1~ t !#,...,QN@g1~ t !,...,gN~ t !#

3D@g1~ t !#¯D@gN~ t !#, ~5!

where D@g(t)# is a suitable integration measure over t
space of functionsg(t). These probability density function
als obey the normalization condition

Q01 (
N51

`
1

N! /
¯

/
QN@g1~ t !,...,gN~ t !#

3D@g1~ t !#¯D@gN~ t !#51, ~6!

where/ denotes the operation of path integration. In th
paper we assume that all relaxation channels are indepen
and thus the grand canonical probability density function
are Poissonian

Q05expH 2
/

rg@g1~ t !#D@g1~ t !#J , ~7!
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QN@g1~ t !,...,gN~ t !#D@g1~ t !#¯D@gN~ t !#

5expH 2
/

rg@g1~ t !#D@g1~ t !#J
3rg@g1~ t !#D@g1~ t !#¯rg@gN~ t !#D@gN~ t !#,

~8!

whererg@g(t)#D@g(t)# is the average functional density o
states corresponding to a relaxation channel.

In this paper we are interested in two different problem
The first problem is the evaluation of the probabili
P(x;t)dx that a moving particle is at a position betweenx
andx1dx at timet. The second problem is the evaluation
the stochastic properties of the concentration of particle
position x and timet. Solving these problems involves th
evaluation of ensemble averages in terms of the grand
nonical probability densities~7! and ~8!.

The probabilityP(x;t)dx can be expressed as the avera
of a d function

P~x;t !5^d„x2x@x~ t0!;Fdis#…&, ~9!

wherex@x(t0);Fdis# is the solution of the Langevin equatio
~2! for a given realization of the random forceFdis(t) and the
averagê¯& is computed by using the grand canonical pro
ability density functionals~7! and ~8!.

The probability density functional of the concentratio
field C(x;t),

P@C~x;t !#D@C~x;t !# with
/

P@C~x;t !#D@C~x;t !#51

~10!

can be expressed as the ensemble average of ad functional

d†C~x;t !2C@x;t;Fdis
~1!~ t8!,Fdis

~2!~ t8!,...#‡

3D@C~x;t !#, ~11!

whereC@x;t;Fdis
(1)(t8),Fdis

(2)(t8),...# is one realization of the
concentration field, which can be expressed as the sumd
functions, eachd function corresponding to one particle,

C@x;t;Fdis
~1!~ t8!,Fdis

~2!~ t8!,...#5(
u

d„x2x@xu~ t0!;Fdis
~u!#….

~12!

We have

P@C~x;t !#D@C~x;t !#

5K dS C~x;t !2(
u

d„x2x@xu~ t0!;Fdis
~u!#…D

3D@C~x;t !#L , ~13!

where, once again, the average^¯& is computed by using the
grand canonical probability density functionals~7! and ~8!.

The evaluation of the ensemble averages~9! and~13! for
arbitrary fluctuations of the environment is in general ve
difficult. In this paper we limit ourselves to two differen
.
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extreme cases. The first case corresponds to systems
static disorder for which the fluctuations of the random for
are frozen, that is, a fluctuation once it occurs, lasts fore
The second case corresponds to the other extreme, of r
independent fluctuations of the random force; that is, to fl
tuations with Lévy white noise.

III. SYSTEMS WITH STATIC DISORDER.
ONE-PARTICLE DESCRIPTION

For systems with static disorder the contributio
g1 ,g2 ,... of different relaxation channels to the rando
force are random numbers, rather than random functions,
the grand canonical probability density functionals~5! are
replaced by probability densities

Q0 ,Q1~g1!dg1 ,...,QN~g1 ,...,gN!dg1¯dgN , ~14!

with the normalization condition

Q01 (
N51

`
1

N! E2`

1`

¯E
2`

1`

QN~g1 ,...,gN!dg1¯dgN51.

~15!

The grand canonical probability densities~14! describe the
statistics of the individual events~channels!. Later on, we
shall introduce a different set of grand canonical probabi
densities, which describe the concentration fluctuatio
These two sets of probability densities are distinct a
should not be mistaken. For independent relaxation chan
the probability densitiesQ1 ,Q2 ,... arePoissonian

Q05expS 2E
2`

1`

rg~g!dgD , ~16!

QN~g1 ,...,gN!dg1¯dgN

5expS 2E
2`

1`

rg~g!dgD rg~g1!dg1¯rg~gN!dgN ,

~17!

where rg(g)dg is the average number of channels with
contribution to the random force betweeng andg1dg. For
Lévy fluctuations the distribution of the numbers of chann
with respect to their contribution to the random force
given by a self-similar law of the negative power-law typ
For the case of relaxation theory the contribution of a ch
nel is a positive number. A random force, however, can
either positive or negative and its distribution is usually sy
metrical. For this reason we assume that the average d
bution of the number of channels is given by a negat
power law in the absolute value of the contributiong to the
random force

rg~g!dg5kugu2~11a!dg, k.0, 2.a.0 ~18!

where k.0 is a positive proportionality coefficient and
.a.0 is a positive fractal exponent. For the particular ca
of the harmonic potential~3! the Langevin equation~2! be-
comes
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g
d

dt
x~ t !1kx~ t !5Fdis~ t !. ~19!

Equation~19! has the solution

x~ t !5x~ t0!expF2
k

g
~ t2t0!G

1
1

g E
t0

t

expF2
k

g
~ t2t8!GFdis~ t8!dt8. ~20!

For static ~quenched! disorderFdis is independent of time
and
x~ t !5x~ t0!expF2
k

g
~ t2t0!G

1
1

k F12expS 2
k

g
~ t2t0! D GFdis. ~21!

We use the notation

G~q;t !5E
2`

1`

P~x;t !exp@ ixq#dx ~22!

for the Fourier transform~the characteristic function! of the
probability densityP(x;t) of the positionx of a particle at
time t. We assume that the fluctuations of the initial positi
of a particlex(t0) are independent of the fluctuations of th
random forceFdis and use Eqs.~9! and ~22! for expressing
G(q;t) as a grand canonical average
y

f

G~q;t !5^exp@ ix~ t !q#&

5 K expXiqH x~ t0!expS 2
k

g
~ t2t0! D1

1

k F12expS 2
k

g
~ t2t0! D GFdisJ CL

5Gtransient~q;t !Gnormal~q;t !, ~23!

where

Gtransient~q;t !5 K expH iqFx~ t0!expS 2
k

g
~ t2t0! D G J L 5G0S q expF2

k

g
~ t2t0!G D , ~24!

Gnormal~q;t !5Q01 (
N51

`
1

N! E2`

1`

¯E
2`

1`

QN~g1 ,...,gN!dg1¯dgN expH iq
1

k F12expS 2
k

g
~ t2t0! D G (

m51

N

gmJ , ~25!

and

G0~q!5E
2`

1`

exp~ iqx!P~x;t0!dx ~26!

is the Fourier transform~characteristic function! of the probability densityP(x;t0) of the initial position of the particle at time
t0 . For a Poissonian process described by Eqs.~16! and~17! the sum in Eq.~25! over the numberN of channels can be easil
evaluated, resulting in

Gnormal~q;t !5expF2E
2`

1`

rg~g!S 12expH iq
1

k F12expS 2
k

g
~ t2t0! D GgJ DdgG . ~27!

If the distribution of the average number of channels is given by the self-similar law~18! then the integral in the exponent o
Eq. ~27! can be computed analytically. We have

Gnormal~q;t !5expX2 2

a
kH uqu

1

k F12expS 2
k

g
~ t2t0! D G J a

G~12a!cosS pa

2 D C. ~28!

The inverse Fourier transform ofGnormal(q;t)

G~x;t2t0!5F21Gnormal~q;t !5
1

2p E
2`

1`

exp@2 iqx#expX2 2

a
kaH uqu

1

k F12expS 2
k

g
~ t2t0! D G J a

G~12a!cosS pa

2 D Cdq

~29!
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is a Green function~propagator! for the diffusion process
which can be expressed in terms of the symmetric sta
Lévy probability density with a fractal exponenta @28#

C«~y!5
1

2p E
2`

1`

exp@2 iqy2uyua#dy with 2.a.0.

~30!

We have

G~x;t2t0!5
1

2p E
2`

1`

exp@2 iqx#

3exp$2@ uquz~ t2t0!#a%dq

5
1

z~ t2t0!
Ca@x/z~ t2t0!#, ~31!

where

z~ t2t0!5H 2

a
G~12a!cosS pa

2 D J 1/a

3k1/a
1

k F12expS 2
k

g
~ t2t0! D G . ~32!

For large times this propagator tends towards a nonequ
rium stationary form. We have

lim
t→`

G~x;t2t0!5
1

z`
CaS x

z`
D , ~33!

with

z`5H 2

a
G~12a!cosS pa

2 D J 1/a 1

k
k1/a. ~34!

The probability densityP(x;t) of the position of a par-
ticle at timet can be computed from Eqs.~22!–~24! and~28!.
We obtain

p~x;t !5F21@G~q;t !#

5E
2`

1` P0~y8!

z`
CaH x2y8j~ t2t0!

z`$12j~ t2t0!%J dy8

5E
2`

1` P0~y8!

z`
CaH x exp@~ t2t0!k/g#2y8

z`$exp@~ t2t0!k/g#21%J dy8

~35!

where

j~ t2t0!5exp@2~ t2t0!k/g#. ~36!

From Eq.~35! it is easy to check that for large times th
probability densityP(x;t) tends towards a nonequilibrium
stationary form which is independent of the initial probab
ity density P(x;t0) of the position of a particle at timet0 .
We have
le

b-

lim
t→`

P~x;t !5 lim
t→`

G~x;t2t0!

5
1

z`
CaS x

z`
D independent ofP~x;t0!.

~37!

In conclusion, in this section we have shown that for s
tems with static disorder and a harmonic potential, the pr
ability density P(x;t) of the position of a moving particle
can be represented by a convolution product between
initial probability densityP(x;t0) at timet0 and a propagator
G(x;t2t0), which is given by a time-dependent stable pro
ability density of the Le´vy type. For large times both the
state probability densityP(x;t) and the propagatorG(x;t
2t0) tend towards a time-independent nonequilibrium pro
ability density of the Le´vy type which is independent of th
initial state of the system.

IV. SYSTEMS WITH LE´ VY WHITE NOISE.
ONE-PARTICLE DESCRIPTION

For systems with Le´vy white noise the grand canonica
probability density functionals can be expressed as the c
tinuous limit of a product of static probability densities of th
type ~14!. We divide the time interval of lengtht2t0 into
small slices of lengthDt. For Lévy white noise the fluctua-
tions of ag variable attached to one channel at a given ti
is independent of the fluctuations at other times; we hav

QN@g1~ t !,...,gN~ t !#D@g1~ t !#¯D@gN~ t !#

5 lim
Dt→0

H)
u

FexpS 2E
2`

1`

rg~g~u!;Dt !dg~u!D
3rg~g1

~u!!dg1
~u!
¯rg~gN

~u!!dgN
~u!G J , ~38!

where

gn
~u!5gn

n~ t01uDt !, n51, . . . ,N. ~39!

The average density of channelsrg(g;Dt) is given by a scal-
ing law similar to Eq.~18!, where now the proportionality
coefficientk is a function of the lengthDt of the time inter-
val

rg~g;Dt !dg5k~Dt !ugu2~11a!dg,

k.0, 2.a.0. ~40!

In order that the averages computed in terms of the gr
canonical probability density functionals~38! are physically
consistent it is necessary thatk(Dt) obeys the scaling con
dition

k5k0~Dt !12a with k0.0. ~41!

The evaluation of the Fourier transform of the state pro
ability density is straightforward. For averaging we di
cretize the expression ofx„t;x(t0)… compute the average an
then pass to the limitDt→0. We have
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G~q;t !5^exp@ ix~ t !q#&

5K expH iqFx~ t0!expS 2
k

g
~ t2t0! D1

1

g E
t0

t

expF2
k

g
~ t2t8!GFdis~ t8!dt8G J L

5 K expH iqFx~ t0!expS 2
k

g
~ t2t0! D G J L

3)
u

K expH iqF1

g
expS 2

k

g
~ t2tu8! DFdis~ tu8!Dt8G J L

5Gtransient~q;t !)
u

Ginfi~q;t;tu8!, ~42!

where

Ginfi~q;t;tu8!5 K expH iqF1

g
expS 2

k

g
~ t2tu8! DFdis~ tu8!Dt8G J L , ~43!

andGtransient(q;t) is given by Eq.~24!. By comparing Eqs.~24! and~43! we notice thatGinfi(q;t;tu8) has a structure similar to
Gnormal(q;t) for systems with static disorder given by Eq.~25!. If in Eq. ~43! we make the replacements

Ginfi~q;t;tu8!→Gnormal~q;t !, ~44!

1

g
expF2

k

g
~ t2tu8!GDt8→ 1

k F12expS 2
k

g
~ t2tu8! D G , ~45!

we get Eq.~25!. By making use of this observation we can easily evaluateGinfi(q;t;tu8) from Eq. ~28!. We get

Ginfi~q;t;tu8!5expH 2
2

a
kFq

1

g
expS 2

k

g
~ t2tu8! DDt8Ga

G~12a!cosS pa

2 D J . ~46!

The next step is to evaluateGnormal(q;t)

Gnormal~q;t !5)
u

Ginfi~q;t;tu8! ~47!

by passing to the continuous limit. From Eqs.~41! and ~46! and ~47! we come to

Gnormal~q;t !5expH 2uqua
2k0

aga E
t0

t

expF2
ak

g
~ t2t8!Gdt8G~12a!cosS pa

2 D J
5expH 2uqua

2k0

a2ga21k F12expS 2
ak

g
~ t2t8! D GG~12a!cosS pa

2 D J
5exp$2uqua@z* ~ t2t0!#a%, ~48!

where

z* ~ t2t0!5z *̀ $12exp@2n~ t2t0!#%1/a

5H 2k0

a2kga21 G~12a!cosS pa

2 D $12exp@2n~ t2t0!#%J 1/a

, n5ak/g ~49!

z *̀ 5H 2k0

a2kga21 G~12a!cosS pa

2 D J 1/a

. ~50!
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The propagator of the diffusion process,G(x;t2t0)
5F21G(q;t) and the state probabilityP(x;t) is given by a
relationship similar to Eqs.~31! and ~35!, respectively,

G~x;t2t0!5
1

z* ~ t2t0!
Ca@x/z* ~ t2t0!#, ~51!

and

P~x;t !5F21@G~q;t !#

5E
2`

1` P0~y8!

z *̀

3CaH x exp@v~ t2t0!/a#2y8

z *̀ $exp@n~ t2t0!#21%1/aJ dy8. ~52!

The time dependence of the propagatorG(x;t2t0) and of
the state probabilityP(x;t) is different for systems with
static disorder and for systems with white Le´vy noise, re-
spectively. However, in the long run, they both tend towa
the same type of nonequilibrium stationary profile. In t
case of white Le´vy noise, we have

lim
t→`

P~x;t !5 lim
t→`

G~x;t2t0!

5
1

z *̀
CaS x

z *̀ D independent ofP~x;t0!.

~53!

Equation~53! is similar to Eq.~37! derived in the preceding
section for systems with static disorder.

We mention that the results derived in this section
consistent with the results presented in Ref.@13#. Our equa-
tions are slightly more general than the ones derived in R
@13# because in our derivations we have assumed arbit
initial conditions.

V. SYSTEMS WITH STATIC DISORDER. MANY-BODY
DESCRIPTION

In order to study the dynamics of concentration fluctu
tions we introduce a set of grand canonical probabilities
s

e

f.
ry

-
r

the numberM and the positionsx1 ,...,xM of the particles at
time t,

C0 ,CM~x1 ,...,xM ;t !dx1¯dxM ~54!

with the normalization condition

C01 (
M51

`
1

M ! E2`

1`

¯E
2`

1`

CM~x1 ,...,xM ;t !dx1¯dxM51,

~55!

and assume that these functions are known for the in
time t0

CM~x1 ,...,xM ;t5t0!dx1¯dxM

5CM
0 ~x1 ,...,xM !dx1¯dxM . ~56!

As mentioned in the preceding section the grand canon
probability densities,C0 ,C1 ,... which describe the concentra
tion fluctuations, are different from the probability densiti
Q0 ,Q1 ,... which describe the fluctuations of the rando
force. We introduce the characteristic functionalG@K(x8;t)#
attached to the probability density function
P@C(x;t)#D@C(x;t)# of concentration fluctuations,

G@K~x8;t !#5
/

expH i E
2`

1`

C~x8;t !K~x8;t !dx8J
3P@C~x;t !#D@C~x;t !#

5K expH i E
2`

1`

C~x8;t !K~x8;t !dx8J L ,

~57!

whereK(x;t) is a test function conjugated to the concent
tion field C(x;t). By using Eqs.~13! and ~57! G@K(x8;t)#
can be expressed as
G@K~x8;t !#5K (
M50

`
1

M ! E2`

1`

CM
0 ~x1

0,...,xM
0 !dx1

0
¯dxM

0 expH i E
2`

1`

(
m51

M

d„x2x~xm
0 ;t !…K~x8;t !dx8J L

5K (
M50

`
1

M ! E2`

1`

¯E
2`

1`

CM
0 ~x1

0,...,xM
0 !dx1

0
¯dxM

0 )
M51

M

exp$ iK„x~xm
0 ;t !;t…%L , ~58!

where

xsr
~xsr

0 ;t !5xsr

0 j~ t2t0!1
1

k
@12j~ t2t0!#Fdis ~59!

andj(t2t0) is given by Eq.~36!.
We use the mathematical identity
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f „x~ t !…5
1

2p E exp@2 ibx~ t !#dbE f ~h!exp~ ibh!dh ~60!

which can be easily derived by using a pair of direct and inverse Fourier transforms. By combining Eqs.~58! and~60! we get

G@K~x8!#5^I@K~x8!#&, ~61!

with

I@K~x8!#5 (
M50

`
1

M ! E2`

1`

¯E
2`

1`

CM
0 ~x1

0,...,xM
0 !dx1

0
¯dxM

0

3
1

~2p!M E
2`

1`

¯E
2`

1`

expF2 i(
u

bux~xu
0;t !Gdb1¯dbME

2`

1`

¯E
2`

1`

)
m51

M

exp$ iK~hm!%dh1¯dhM . ~62!

Now we change the order of the integrals and express the average with respect to the random force in terms of t
canonical probability densities. After lengthy calculations we obtain

I@K~x8!#5 (
M50

`
1

M ! E2`

1`

¯E
2`

1`E
2`

1`

¯E
2`

1`

CM
0 ~x1

0,...,xM
0 !expF2 i(

u
bux~ t0!jGdx1

0
¯dxM

0

3
1

~2p!M expF2 i(
u

bu

1

k
@12j#FdisGdb1¯dbME

2`

1`

¯E
2`

1`

)
m51

M

exp$ iK~hm!%dh1¯dhM

5 (
M50

`
1

M ! E2`

1`

¯E
2`

1`

MM~2b1j,...,2bMj;t0!db1¯dbM

3
1

~2p!M expF2 i(
u

bu

1

k
@12j#FdisG E

2`

1`

¯E
2`

1`

)
m51

M

exp$ iK~hm!1 ibmhm%dh1¯dhM , ~63!

where

MM
0 ~q1 ,...,qM !5E

2`

1`

¯E
2`

1`

expS i (
M51

M

xuquD CM
0 ~x1 ,x2 ,...,xM ! ~64!

is the multiple Fourier transform of the grand canonical probability densityCM
0 (x1 ,x2 ,...,xM). In Eq. ~63!, for simplicity, we

have used the notationj for j(t2t0). The next step is to evaluate the average over the random force, resulting in

G@K~x8!#5 (
M50

`
1

M ! E2`

1`

¯E
2`

1`

MM~2b1j,...,2bMj;t0!db1¯dbM

3
1

~2p!M expH 2@z~ t2t0!#a (
m51

M

ubmuaJ E
2`

1`

¯E
2`

1`

)
m51

M

exp$ iK~hm!1 ibmhm%dh1¯dhM . ~65!

Equation~65! is the main result of this section; it contains all information concerning the fluctuations of the concen
field C(x;t), expressed in terms of the different moments^C(x1 ;t)C(x2 ;t)¯& or cumulantŝ ^C(x1 ;t)C(x2 ;t)¯&&, the
grand canonical densitiesCM(x1 ,x2 ,...,xM ;t) as well as the corresponding multiparticle product densitiesIm(x1 ,x2 ,...,xm ;t)
and the correlation functionsgm(x1 ,x2 ,...,xm ;t). The main steps of the mathematical derivations are outlined in Append
A and B. In the following we give only the results.

The momentŝC(x1 ;t)C(x2 ;t)¯& and the cumulantŝ̂ C(x1 ;t)C(x2 ;t)¯&& can be expressed as functional derivatives
G@K(x8)#:

^C~x1 ;t !¯C~xN ;t !&5~ i !2N dN

dK~x1 ;t !¯dK~xN ;t !
G@K~x8;t !#U

K~x8;t !50

, ~66!

^^C~x1 ;t !¯C~xN ;t !&&5~ i !2N dN

dK~x1 ;t !¯dK~xN ;t !
ln G@K~x8;t !#U

K~x8;t !50

. ~67!

For moments we have managed to derive a general formula
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PRE 62 1751LÉVY DIFFUSION IN A FORCE FIELD, HUBER . . .
^C~x1 ;t !¯C~xN ;t !&5 (
M5N

`
1

M ! (
n151

M

¯ (
nN51

M E
2`

1`

¯E
2`

1`

BM
0 ~0, . . . ,2bn1

j, . . . ,0, . . . ,2bnx
j,...,0,...!

3
1

~2p!N expH 2F z~~ t2t0!#a (
m51

M

ubmuaJ expS i (
u51

N
bnu

xuD dbn1
¯dbnx

. ~68!

The cumulants are more difficult to evaluate. A general formula similar to Eq.~68! is not available; however, they can b
computed step by step,

^^C~x;t !&&5E
2`

1` ^^C0~x!&&
z`

CaH x exp@~ t2t0!k/g#2y8

z`$exp@~ t2t0k/g#21%J dy8, ~69!

^^C~x1 ;t !C~x2 ;t !&&5E
2`

1`E
2`

1` ^^C0~y18!C0~y28!&&2d~y182y28!^^C0~y18!&&

~z`!2

3 )
u51,2

CaH xu exp@~ t2t0!k/g#2yu8

z`$exp@~ t2t0!k/g#21%J dy18dy28

1d~x12x2!E
2`

1` ^^C0~y18!&&
z`

CaH x1 exp@~ t2t0!k/g#2y18

z`$exp@~ t2t0!k/g#21%J dy18 , ~70!

whereC0(x)5C(x;t0).
Equation ~68! for the moments of the concentration field can be used for computing the grand canonical prob

densities, for the numbers and the positions of the particles at timet. In Appendix A we show that

CM~x1 ,...,xM ;t !5E
2`

1`

¯E
2My

1` CM
0 ~y18 ,...,yM8 !

~z`!M )
w51

M

CaH xw exp@~ t2t0!k/g#2yw8

z`$exp@~ t2t0!k/g#21%J dy18¯dyN8 . ~71!
-
ar
uc

n
r t

iti

to

re-
re-
rip-

t
he
Following Carruthers@29# we introduce the product den
sities, corresponding to different numbers of distinct p
ticles placed at different positions as the averages of prod
of d functions,

Im,~x1 ,...,xm ;t !5^d~x12xb1
!¯d~x12xbm

!&, ~72!

where all labelsb1 ,...,bm are distinct. These functions ca
be computed by means of a chain of relationships simila
Eq. ~71!,

Im~x1 ,...,xm ;t !

5E
2`

1`

¯E
2`

1` Im
0 ~y18 ,...,ym8 !

~z`!m

3 )
w51

m

CaH xw exp@~ t2t0!k/g#2yw8

z`$exp@~ t2t0!k/g#21%J dy18¯dym8 ,

~73!

where

Im
0 ~y18 ,...,ym8 !5Im~y18 ,...,ym8 ;t0!. ~74!

The correlation functionsgm(x1 ,x2 ,...,xm ;t) are defined
as the cumulants corresponding to the product dens
Im(x1 ,...,xm ;t) and can be computed starting from Eq.~73!
~see Appendix B!. We have
-
ts

o

es

gm~x1 ,...,xm ;t !

5E
2`

1`

¯E
2`

1` gm~y18 ,...,ym8 ;t0!

~z`!m

3 )
u51

m

CaH xu exp@~ t2t0!k/g#2yu8

z`{exp@~ t2t0!k/g#21} J dy18¯dym8 .

~75!

In particular, the correlation function of first order is equal
the average value of the concentration field

g1~x;t !5^^C~x;t !&&

5E
2`

1` ^^C0~x!&&
z`

3CaH x exp@~ t2t0!k/g#2y8

z`$exp@~ t2t0!k/g#21%J dy8. ~76!

By comparing the results of the many-body approach p
sented in this section with the one-particle description p
sented in Sec. III, we notice that these two different desc
tions are consistent with each other. In the first place Eq.~69!
for the first cumulant of the concentration field,^^C(x;t)&&,
is similar to Eq.~35! for the probability densityP(x;t) of the
position of a moving particle at timet, derived in Sec. III. By
comparing Eqs.~35! and ~69! and taking into account tha
the first cumulant of the concentration field is equal to t
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average valuêC(x;t)& we notice that the two equations a
equivalent to each other if we assume that

P~x;t !5^^C~x;t !&&/^^M &&5^C~x;t !&/^M &, ~77!

P0~x!5^^C0~x!&&/^^M &&5^C0~x!&/^M &, ~78!

where

^M &5E
2`

1`

^C~x;t !&dx5E
2`

1`

^C0~x!&dx ~79!

is the average number of particles in the system.
For computing the probability density functional of co

centration fluctuations we need more information concern
the initial distribution of particles in the system. In the fo
lowing we consider a particular case, a grand canonical
semble of noninteracting particles, for which the initial pro
ability densities are given by~see Appendix C!

CM
0 ~x1 ,...,xM !5exp~2^^M &&!^C0~x1!&¯^C0~xM !&,

~80!

the probabilityP(M ) of the total number of particlesM is
Poissonian

P~M !5
1

M ! E2`

1`

¯E
2`

1`

CM
0 ~x1 ,...,xM !dx1¯dxM

5
^^M &&M

M !
exp~2^^M &&!, ~81!

the characteristic functionalG@K(x8)# of the concentration
field is given by

G@K~x8!#5expS E
2`

1`

$exp@ iK~x8!#21%^C~x8;t !&dx8D ,

~82!

and the probability density functional of concentration flu
tuations,P@C(x;t)#D@C(x;t)#, can be expressed as

P@C~x;t !#D@C~x;t !#

5 lim
;Dxu→0

)
u

H @^C~xu ;t !&Dxu#C~xu ;t !Dxu

@C~xu ;t !Dxu#!

3exp@2^C~xu ;t !&Dxu#J
5exp$2F@C~x;t !#%D@C~x;t !#, ~83!

where
g

n-
-

-

F@C~x;t !#5E
2`

1`

C~x;t !lnF C~x;t !

^C~x;t !&Gdx ~84!

is a stochastic potential and the integration meas
D@C(x;t)# is given by

D@C~x;t !#5 lim
;Dxu→0

)
u

H D@C~xu ;t !Dxu#

A2p^C~xu ;t !&Dxu
J . ~85!

The field described by Eqs.~82!–~85! is Poissonian, and
as expected for a Poissonian field, all cumulants of or
bigger than one ared correlated,

^^C~x1 ;t !C~x2 ;t !¯C~xm ;t !&&

5^^C~x1 ;t !&&)
u52

m

d~xu2x1!. ~86!

The product densities are factorizable and all correlat
functions of order bigger than one are equal to zero

Im~x1 ,...,xm ;t !5 )
u51

m

I1~xu ;t !5 )
u51

m

^^C~xu ;t !&&,

~87!

gm~x1 ,...,xm ;t !50, m>2. ~88!

In conclusion, in this section we have developed a gen
method for computing the characteristic functional of t
concentration field, the grand canonical joint probability de
sities, product densities, and correlation functions for Le´vy
diffusion in systems with static disorder. The results deriv
in this section are going to be used in Sec. VII for develop
a thermodynamic theory for Le´vy diffusion.

VI. SYSTEMS WITH LE´ VY WHITE NOISE. MANY-BODY
DESCRIPTION

For systems with Le´vy noise the computations follow es
sentially the same steps as for systems with static disor
The expression ~58! for the characteristic functiona
G@K(x8;t)# of the concentration field remains valid with th
difference that the functionsxsr

(xsr

0 ;t) are given by

x~xsr

0 ;t !5xsr

0 j~ t2t0!1
1

g E
t0

t

j~ t2t8!F~ t8!dt8. ~89!

By following the same steps as in Sec. V we can derive
expression for the ensemble average in Eq.~58!,
G@K~x8!#5 (
M50

`
1

M ! E2`

1`

¯E
2`

1`

MM~2b1j,...,2bMj;t0!db1¯dbM

3
1

~2p!M expH 2
2k0

a2ga21k H 12expF2
ak

g
~ t2t8!G J G~12a!cosS pa

2 D (
m51

M

ubmuaJ
3E

2`

1`

¯E
2`

1`

)
m51

M

exp$ iK~hm!1 ibmhm%dh1¯dhM . ~90!

By using the notations introduced in Sec. IV@Eqs.~49! and ~50!#, Eq. ~90! can be rewritten in the form
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PRE 62 1753LÉVY DIFFUSION IN A FORCE FIELD, HUBER . . .
G@K~x8!#5 (
M50

`
1

M ! E2`

1`

¯E
2`

1`

MM~2b1j,...,2bMj;t0!db1 ...dbM

3
1

~2p!M expH 2@z* ~ t2t0!#a (
m51

M

ubmuaJ E
2`

1`

¯E
2`

1`

)
m51

M

exp$ iK~hm!1 ibmhm%dh1¯dhM , ~91!

wherez* (t2t0) is given by Eq.~49!.
From Eq.~91! we can compute all stochastic properties of the concentration field. The moments^C(x1 ;t)¯C(xN ;t)& are

given by Eqs.~68! wherez(t2t0) is replaced byz* (t2t0). The cumulants of first and second order of the concentration
given by

^^C~x;t !&&5E
2`

1` ^^C0~x!&&
z *̀

CaH x exp@n~ t2t0!/a#2y8

z *̀ $exp@n~ t2t0!#21%1/aJ dy8, ~92!

^^C~x1 ;t !C~x2 ;t !&&5E
2`

1`E
2`

1` ^^C0~y18!C0~y28!&&2d~y182y28!^^C0~y18!&&

~z *̀ !2

3 )
u51,2

CaH xu exp@n~ t2t0!/a#2yu8

z *̀ $exp@n~ t2t0!#21%1/aJ dy18dy28

1d~x12x2!E
2`

1` ^^C0~y18!&&

z *̀
CaH x1 exp@n~ t2t0!/a#2y18

z *̀ $exp@n~ t2t0!#21%1/aJ dy18 . ~93!

Similarly, the grand canonical joint probability densities,CM(x1 ,...,xM ;t), the product densitiesIm(x1 ,...,xm ;t), and the
correlation functionsgm(x1 ,...,xm ;t) are given by

CM~x1 ,...,xM ;t !5E
2`

1`

¯E
2`

1` CM
0 ~y18 ,...,yM8 !

~z *̀ !M )
w51

M

CaH xw exp@n~ t2t0!/a#2yw8

z *̀ $exp@n~ t2t0!#21%1/aJ dy18¯dyN8 , ~94!

Im~x1 ,...,xm ;t !5E
2`

1`

¯E
2`

1` Im
0 ~y18 ,...,ym8 !

~z *̀ !m )
w51

m

CaH xw exp@n~ t2t0!/a#2yw8

z *̀ $exp@n~ t2t0!#21%1/aJ dy18¯dym8 , ~95!

gm~x1 ,...,xm ;t !5E
2`

1`

¯E
2`

1` gm~y18 ,...,ym8 ;t0!

~z *̀ !m )
w51

m

CaH xw exp@n~ t2t0!/a#2yw8

z *̀ $exp@n~ t2t0!#21%1/aJ dy18¯dym8 . ~96!
fo
n
is
n

n
in

ap
u

en
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The interpretation of the result derived in this section
systems with Le´vy white noise is similar to the interpretatio
of the results derived in Sec. V for systems with static d
order. The many-body approach is consistent with the o
particle theory developed in Sec. IV. The relationships~78!–
~88! for the probability density functional of concentratio
fluctuations for an initial Poissonian distribution rema
valid, with the difference that for Le´vy white noise the aver-
age concentration field̂̂ C(x;t)&& is given by Eq.~92!.

VII. THERMODYNAMIC AND STOCHASTIC
THEORY FOR LÉ VY DIFFUSION IN A FORCE FIELD

In this section we use the results of the many-body
proach derived in Secs. V and VI for developing a noneq
librium thermodynamic approach for Le´vy diffusion. We
start out by investigating the large time behavior for an
semble of Le´vy particles in systems with static disorder. F
large times the characteristic functionalG@K(x8)# of the con-
centration field tends toward a stationary form. For lar
times Eq.~65! leads to
r

-
e-

-
i-

-

e

lim
t→`

G@K~x8!#

5 (
M50

`
P~M ;t5t0!

~2pz`!M E
2`

1`

¯E
2`

1`

)
m51

M FCaS hm

z`
D

3exp@ iK~hm!#Gdh1¯dhM

5 (
M50

`

P~M ;t5t0!F E
2`

1`

CaS h

z`
D

3exp@ iK~h!#
dh

2pz`
GM

, ~97!

where we have used the obvious identity

P0~M !5
1

M ! E2`

1`

¯E
2`

1`

MM~0, . . . ,0;t5t0!db1¯dbM ,

~98!
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and P0(M ) is the probability that the system containsM
particles fort5t0 .

We introduce the one-particle stochastic fractal poten
V(x),

CaS x

z`
D dx

z`
5exp@2V~x!#

dx

z`

that is V~x!52 lnFCaS x

z`
D G , ~99!

and the generating function of the initial number of partic

G~z!5 (
M50

`

zMP~M ;t5t0!. ~100!

From Eqs.~97! and ~100! we obtain

lim
t→`

G@K~x8!#5GF E
2`

1`

exp@ iK~h!2V~h!#
dh

2pz`
G .
~101!

We denote bŷ ^Mm&& the cumulants of different order
of the initial number of particles. These cumulants are
fined by the expansion

ln G@z5exp~ ib !#5 lnH(
M

exp~ ibM !P~M !J
5 (

m51

`
~ ib !m

m!
^^Mm&&. ~102!

In this section we limit ourselves to systems for which t
initial fluctuations of the number of particles are noninterm
tent. For this type of system the relative fluctuations of d
ferent orders

rm5^^Mm&&/^^M &&m, m52,3, . . . ~103!

tend towards zero in the thermodynamic limit

rm5^^Mm&&/^^M &&m→0,

m52,3, . . . as^^M &&, L→`

with ^^C0&&5^^M &&/L constant, ~104!

whereL is the linear dimension of the system.
In this limit Eq. ~101! becomes

lim
t→`

G@K~x8!#5expH ^^M &&F E
2`

1`

exp@ iK~h!

2V~h!#
dh

2pz`
21G J as ^^M &&→`.

~105!

The corresponding probability density functional of conce
tration fluctuations has a Poissonian form similar to Eqs.~81!
and ~82!
l

s

-

-
-

-

P@C~x!#D@C~x!#

5expH 2E
2`

1`

C~x!lnF z`C~x!

^^M &&Ca~x/z`!GdxJ
3D@C~x!#

5expH 2E
2`

1`

C~x!lnFz`C~x!

^C~x!& GdxJ D@C~x!#

5exp$2F@C~x!#%D@C~x!#, ~106!

where

^C~x!&5^^M &&
1

z`
CaS x

z`
D5

^^M &&
z`

exp@2V~x!#

~107!

is the nonequilibrium stationary concentration profile cor
sponding to the one-particle stationary probability dens
~37! derived in Sec. IV,

F@C~x!#5E
2`

1`

C~x!lnF C~x!

^C~x!&Gdx

5E
2`

1`

C~x!lnF z`C~x!

^^M &&Ca~x/z`!Gdx

5E
2`

1`

C~x!V~x!dx1E
2`

1`

C~x!lnFz`C~x!

^^M && Gdx

5U@C~x!#2S@C~x!# ~108!

is a many-body stochastic potential, which is made up of
additive contribution of an energetic term

U@C~x!#5E
2`

1`

C~x!V~x!dx, ~109!

which depends on the one-particle nonequilibrium poten
V(x), and on an entopic term

S@C~x!#52E
2`

1`

C~x!lnFz`C~x!

^^M && Gdx. ~110!

We notice that the many-body stochastic potentialF@C(x)#
has a structure similar to Helmholtz or Gibbs free energie
equilibrium thermodynamics. Since concentration profile
large times corresponds to a nonequilibrium distribution,
one-particle stochastic potentialV(x), which enters Eq.
~109!, is different from the harmonic mechanical potent
defined by Eq.~3!

The many-body stochastic potentialF@C(x)# may serve
as the basis for the development of a nonequilibrium therm
dynamic formalism for Le´vy diffusion in external force
fields. We consider an arbitrary variationdC(x) of the con-
centration field. The conservation of the total number of p
ticles requires that

E
2`

1`

dC~x!dx50. ~111!
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By taking the constraint~111! into account we can comput
the first and the second variations of the stochastic poten
resulting in

dF@C~x!#5E
2`

1`

dC~x!lnF C~x!

^C~x!&Gdx,

d2F@C~x!#5E
2`

1` H @dC~x!#2

^C~x!& J dx. ~112!

From Eqs.~112! it follows that the average concentratio
profile given by Eq.~107! corresponds to a minimum of th
stochastic potentialF@C(x)#. We have

dF@C~x!5^C~x!&#50, d2F@C~x!#.0. ~113!

Equations~113! are similar to the conditions of existence a
stability of thermodynamic equilibrium for normal~Fickian!
diffusion in an external force field.

We can also introduce a field-chemical potential, which
made up of the additive contributions of the one-particle
tential V(x) and of a ‘‘pure chemical contribution’’

m̃@C~x!#5dF@C~x!#/dC~x!

5 ln@C~x!/^C~x!&#

5V~x!1 ln@z`C~x!/^^M &&#. ~114!

All these results can be easily extended to the case
diffusion in systems with Le´vy white noise. Equations~97!–
~114! remain valid, with the difference that the length sca
z` must be replaced by the length scalez *̀ defined by Eq.
~50!. An interesting feature of the diffusion with Le´vy white
noise is that in this case the average concentration field is
solution of a fractional Fokker-Planck equation

]

]t
C~x;t !5

]

]x F n

a
xC~x;t !G1D fract

]a

]xa C~x;t !, ~115!

where the fractional diffusion coefficient

D fract5
2k0

aga G~12a!cosS pa

2 D ~116!

is related to the characteristic length scalez *̀ by the relation-
ship

j *̀ 5S D fract

n D 1/a

5F 2k0

a2kga21 G~12a!cosS pa

2 D G1/a

,

~117!

and the fractional derivative]a/]xa is defined by an inverse
Fourier transformation
al,

s
-

of

he

]a

]xa C~x;t !52F21@C̄~q;t !uqua#

5
21

2p E
2`

1`

C̄~q;t !uquaexp~2 iqx!dq

5
G~11a!

p
sinS pa

2 D E
2`

1` C~x8;t !

ux2x8ua11 dx8.

~118!

In Appendix D we show that the stochastic potential

F@C~x;t !#5E
2`

1`

C~x;t !ln@C~x;t !/C`~x!#dx, ~119!

where

C`~x!5^C~x!&5^^M &&
1

z *̀
CaS x

z *̀ D 5
^^M &&

z *̀
exp@2V~x!#

~120!

is a Lyapunov function for the stochastic evolution equat
~115!; that is, it satisfies the following conditions:

F@C~x;t !#.0 for C~x;t !ÞC`~x!

and ~121!

F@C~x;t !#50 for C~x;t !5C`~x!,

and

d

dt
F@C~x;t !#,0 for C~x;t !ÞC`~x!

and ~122!

d

dt
F@C~x;t !#50 for C~x;t !5C`~x!.

It follows that all transient solutions of the fractional diffu
sion equation~115! tend towards the stationary nonequilib
rium form ~120!.

We conclude this section by investigating the possibilit
of introducing a nonequilibrium temperature for the statio
ary states, which emerge in the limit of large times. We s
by considering the equilibrium limit, which corresponds
a→2. For a→2 the one-particle probability density of th
position of a moving particle has a Gaussian behavior, wh
corresponds to the equilibrium Maxwell-Boltzmann stat
tics. For both types of processes studied in this paper
have

Peq~x!5 lim
t→`

P~x;t !5
Ak

A2pkBT
expF2

kx2

2kBTG , ~123!

and then

Geq~q!5E
2`

1`

Peq~x!exp~ iqx!dx5expH 2
kBT

2k
q2J .

~124!
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For an arbitrary value of the fractal exponenta the Fourier
transform of the stationary one-particle probability density
given by a stretched exponential. We have

Gst~q!5E
2`

1`

Pst~x!exp~ iqx!dx5exp@2~z`!auqua#,

~125!

for systems with static disorder and

Gst~q!5E
2`

1`

Pst~x!exp~ iqx!dx5exp@2~z *̀ !auqua#

~126!

for dynamic disorder with Le´vy white noise. By comparing
Eq. ~14! with Eqs.~125! and~126! we notice that the factors
(z`)a and (z *̀ )a play a role similar to the temperature
equilibrium thermodynamics. By considering suitable p
portionality factors we can introduce a nonequilibrium te
peratureTnoneqwhich is proportional to (z`)a or (z *̀ )a and
which, fora→2, reduces to the equilibrium temperature. W
have

Tnoneq5
4k

kB
~z`!a5

8k12ak

akB
G~12a!cosS pa

2 D , ~127!

for systems with static disorder and

Tnoneq5
4k

kB
~z *̀ !a5

8k0

a2ga21kB
G~12a!cosS pa

2 D
~128!

for dynamic disorder with white Le´vy noise. In terms of the
nonequilibrium temperatureT we can introduce modified
stochastic potentials which, fora→2, reduce to the thermo
dynamic functions of equilibrium thermodynamics. We ha

P@C~x!#D@C~x!#5expH 2
C@C~x!#

kBTnoneq
JD@C~x!#,

~129!

where

C@C~x!#5kBTnoneqF@C~x!#

5h @C~x!#2TnoneqG@C~x!#, ~130!

is a stochastic potential which in the equilibrium limit,a
→2, reduces to the Helmholtz free energy,

h @C~x!#5kBTnoneqU@C~x!# ~131!

is a function which in the equilibrium limit reduces to th
total potential energy of the system and

G@C~x!#5kBS@C~x!#/Tnoneq ~132!

is another function, which in the equilibrium limit reduces
the total entropy of the system. We emphasize that fo
Lévy process withaÞ2 the analogies between the modifie
stochastic potentialsC@C(x)#, h @C(x)#, andG@C(x)#, and
their equilibrium limits corresponding toa→2 are rather
limited. In the nonequilibrium regime it is not possible
s

-
-

a

build a fully developed thermodynamic formalism in term
of C@C(x)#,h @C(x)#,G@C(x)#, and of the nonequilibrium
temperatureT.

VIII. CONCLUSIONS

In this paper we have suggested a method for study
Lévy diffusion in an external force field. We have used t
Huber approach to multichannel parallel relaxation for d
scribing the stochastic properties of the random force ac
on a particle moving in a disordered system. Although
underlying physical mechanisms for multichannel para
relaxation and Le´vy diffusion are different, the correspond
ing evolution equations have a similar mathematical str
ture and the Huber approach can be easily extended to L´vy
diffusion. We have investigated two extreme situations
‘‘frozen’’ random environment with static disorder and
system with strong dynamic disorder for which the fluctu
tions of the environment can be described in terms of Le´vy
white noise. For each case we have developed two diffe
approaches, a one-particle description and a multiparticle
scription, respectively. Although the averaging techniqu
used and the detailed structure of the evolution equations
different for systems with static and dynamic disorder, t
qualitative physical behavior is the same for both types
processes. In both cases the one-particle probability den
of the position of the moving particle tends towards a no
equilibrium stationary form which is independent of the in
tial conditions and which reduces to an equilibriu
Maxwell-Boltzmann distribution in the particular case whe
the Lévy fluctuations of the random force become Gaussi
In both cases the many-body approach makes it possibl
compute the probability density functional of concentrati
fluctuations and to introduce a stochastic potential which
made up of the difference of an energetic and an entro
component. This stochastic potential extends the thermo
namic and stochastic theory of nonequilibrium processes
Ross, Hunt, and Hunt@16–20# to Lévy diffusion. For sys-
tems with fractal Le´vy noise it is possible to introduce
fractional diffusion equation for which the stochastic pote
tial is a Lyapunov function.

Other theories for Le´vy diffusion presented in the litera
ture are based on the Le´vy generalization of the central limi
theorem of probability theory. The transport process
viewed as a succession of a large number of individual ju
processes and one assumes that the probability density o
length of a jump has infinite moments. By using the Le´vy
generalization of the central limit theorem it can be sho
that a Lévy probability law for the propagator~Green func-
tion! of the process emerges for large successions of ju
and that this Le´vy probability law is independent of the de
tailed form of the probability densities attached to the in
vidual jumps. For these types of models Le´vy diffusion oc-
curs only asymptotically. In contrast, in the case of o
model, the self-similar probability law~18! for the contribu-
tion g of an individual collision event to the total value of th
random force leads precisely to a propagator~Green func-
tion! of the Lévy type. In our treatment the Le´vy behavior of
the Green functions is not asymptotic.

The many-body approaches developed in the presen
search deal with independent particles for which the corre
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tions are due to the initial state of the system. Further de
opments of the theory should consider systems w
interacting particles. A possible theoretical development m
involve a perturbation theory for the characteristic functio
for which the starting~reference! state is a system of inde
pendent particles like the ones studied in this paper.

In this paper we have introduced a powerful averag
technique that can be used for the study of a broad clas
rate and transport processes in systems with static or
namic disorder. An interesting type of system for which t
l-
h
y
l

g
of
y-

method can be used is the study of reaction kinetics o
single molecule. Work on this problem is in progress a
will be presented elsewhere.
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APPENDIX A

By inserting Eq.~65! into Eq. ~66! and evaluating the functional derivatives we come to

^C~x1 ;t !¯C~xN ;t !&5 (
M5N

`
1

M ! E2`

1`

¯E
2`

1`

MM~2b1j,...,2bMj;t !
1

~2p!M expH 2@z~ t2t0!#a (
m51

M

ubmuaJ db1¯dbM

3E
2`

1`

¯E
2`

1`

(
n151

M

¯ (
nN51

M

d~hn1
2x1!¯d~hnN2xN! )

m51

M

exp~ ibmhm!dh1¯dhM . ~A1!

We use the identity

E
2`

1`

¯E
2`

1`

(
n151

M

¯ (
nN51

M

d~hn1
2x1!¯d~hnN2xN! )

m51

M

exp~ ibmhm!dh1¯dhM

5 (
n151

M

¯ (
nN51

M

expS i (
u51

N
bnu

xuD )
mÞn1 ,..,nN

M

@2pd~bm!#, ~A2!

which is a straightforward consequence of the well-known relationship

2pd~q!5E
2`

1`

exp~ iqx!dx. ~A3!

From Eqs.~A1! and ~A2! we get

^C~x1 ;t !¯C~xN ;t !&

5 (
M5N

`
1

M ! (
n151

M

(
nN1

51

M E
2`

1`

¯E
2`

1`

MM~2b1j,...,2bMj;t !db1¯dbM

3
1

~2p!N expH 2@z~ t2t0!#a (
m51

M

ubmuaJ expS i (
u51

N
bnu

xuD )
mÞn1 ,...,nN

M

d~bm!db1¯dbM . ~A4!

By computing in Eq.~A4! M2N integrals in the Fourier variablesbm , m51,...,M , mÞn1 , . . . ,nN we come to Eq.~68!.
For computing the grand canonical probability densitiesC(x1 , . . . ,xM ;t) we evaluate the multiple Fourier transforms

the moments of the concentration field

EN~q1 ,...,qN ;t !5E
2`

1`

¯E
2`

1`

expS i (
u51

N
quxuD ^C~x1 ;t !¯C~xN ;t !&dx1¯dxN . ~A5!

We have

C~x1 ;t !¯C~xN ;t !5 (
n151

M

¯ (
nN51

M

)
u51

N
d~xnu

8 2xu!, ~A6!

and thus, if we assume that the ensemble averaging and the Fourier transformation commute, we get
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EN~q1 ,...,qN ;t !

5K E
2`

1`

¯E
2`

1`

dx1¯dxN expS i (
u51

N
quxuD (

n151

M

¯ (
nN51

M

)
u51

N
d~xnu

8 2xu!L
5K (

n151

M

¯ (
nN51

M

expF (
u51

N
iquxnu

8 G L
5 (

M5N

`
1

M ! E2`

1`

¯E
2`

1`

(
n151

M

¯ (
nN51

M

expF (
u51

N
iquxnn

8 GCM~x18 ,...,xM8 ;t !dx18 ...dxM8

5 (
M5N

`
1

M ! E2`

1`

¯E
2`

1`

dx18¯dxM8 (
n151

M

¯ (
nN51

M

expF (
w51

M

(
u51

N
iquxnu

8 dwnuG
3

1

~2p!M E
2`

1`

¯E
2`

1`

expS 2 i (
w51

M

bwxw8 DMM~b1 ,...,bM ;t !db1¯dbM

5 (
M5N

`
1

M ! E2`

1`

¯E
2`

1`

dx18¯dxM8 (
n151

M

¯ (
nN51

M

3
1

~2p!M E
2`

1`

¯E
2`

1`

expF i (
w51

M S (
u51

N
iqudwnu

2bwD xw8 GMM~b1 ,...,bM ;t !db1¯dbM . ~A7!

The multiple Fourier transformEN(q1 ,...,qN ;t) can be also computed from Eq.~68!, resulting in

EN~q1 ,...,qN ;t !

5 (
M5N

`

(
n151

M

¯ (
nN51

M
1

M ! E2`

1`

¯E
2`

1`

MM
0 ~2b1j,...,bMj!db1¯dbM

3expH 2@z~ t2t0!#a (
m51

M

ubmuaJ )
m51

M

dS (
u51

N
dmnu

qu1bmD
5 (

M5N

`

(
n151

M

¯ (
nN51

M
1

~2p!MM ! E2`

1`

¯E
2`

1`

dx18¯dxM8 E
2`

1`

¯E
2`

1`

db1¯dbMMM
0 ~2b1j,...,bMj!

3expH 2@z~ t2t0!#a (
m51

M

ubmua1 i (
m51

M S (
u51

N
dmnu

qu1bmD xm8 J . ~A8!

By comparing Eqs.~A7! and ~A8! we notice that we must have

MM~b1 ,...,bM ;t !5MM
0 ~b1j,...,bMj!expH 2@z~ t2t0!#a (

m51

M

ubmuaJ . ~A9!

If we apply a multiple inverse transform to Eq.~A9! we come to Eq.~71!.

APPENDIX B

The product densities defined by Eqs.~72! express the possibility of occurrence ofm particles, the first at a position betwee
x1 andx11dx1 ,..., and themth at a position betweenxm andxm1dxm , regardless of the numbers of particles that may e
at other positions. In Ref.@30# we have shown that the Carruthers definition of product densities@29# is equivalent to the
classical definition of Stratonovich@26# and can be computed by using the following relations:

Im~x1 ,...,xm ;t !5 (
M5m

`
1

~M2m!! E2`

1`

¯E
2`

1`

dxm11¯dxMCM~x1 ,...,xM ;t !. ~B1!

By applying a multiple Fourier transformation to Eq.~B1! we obtain
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Īm~b1 ,...,bm ;t !5E
2`

1`

¯E
2`

1`

expS i (
u51

m

xubuD Im~x1 ,...,xm ;t !dx1¯dxm

5 (
M5m

`
1

~M2m!!
MM~b1 ,...,bm ,bm1150, . . . ,bM50;t !, ~B2!

from which, by using Eq.~A9!, we obtain

J̄m~b1 ,...,bm ;t !5expH 2@z~ t2t0!#a (
u51

m

ubuuaJ
3 (

M5m

`
1

~M2m!!
MM~b1j,...,bmj,bm1150, . . . ,bM50;t0!

5expH 2@z~ t2t0!#a (
u51

m

ubuuaJ Īm~b1j,...,bmj;t0!. ~B3!

By applying a multiple inverse transformation to Eq.~B3! we get Eq.~73!.
For computing the correlation functionsgm(x1 ,x2 ,...,xm ;t) we introduce the generating functionalR@Q(x);t# of the

product densities

R@Q~x!;t#511 (
m51

`
1

m! E2`

1`

¯E
2`

1`

Im~x1 ,...,xM ;t !Q~x1!¯Q~xm!dx1¯dxm , ~B4!

whereQ(x) is a suitable test function. We insert Eqs.~73! into Eq. ~B4!, resulting in

R@Q~x!;t#511 (
m51

`
1

m! E2`

1`

¯E
2`

1`

Im
0 ~y18 ,...,ym8 !

3 )
w51

m H E
2`

1` Q~xw!

z`
CaH xw exp@~ t2t0!k/g#2yw8

z`$exp@~ t2t0!k/g#21%J dxwJ dy18¯dym8

5RFQ~y!5E
2`

1` Q~x!

z`
CaH x exp@~ t2t0!k/g#2y

z`$exp@~ t2t0!k/g#21%J dx;t0G . ~B5!

The correlation functionsgm(x1 ,x2 ,...,xm ;t) are defined by the cumulant expansion

ln R@Q~x!;t#5 (
m51

`
1

m! E2`

1`

¯E
2`

1`

gm~x1 ,x2 ,...,xm ;t !Q~x1!¯Q~xm!dx1¯dxm . ~B6!

We take the logarithm of each term of Eq.~B5! and expand both terms by using the cumulant expansion~B6!. We get

(
m51

`
1

m! E2`

1`

¯E
2`

1`

dx1¯dxmQ~x1!¯Q~xm!

3Fgm~x1 ,x2 ,...,xm ;t !2E
2`

1`

¯E
2`

1`

dy18 dyN8
gm~y18 ,...,ym8 ;t0!

~z`!m )
w51

M

CaH xw exp@~ t2t0!k/g#2yw8

z`$exp@~ t2t0!k/g#21%J G . ~B7!

Since the test functionsQ(x1),...,Q(xm) are arbitrary, it follows that the coefficients of the productsQ(x1)¯Q(xm) must
equal zero, resulting in Eqs.~75!.
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APPENDIX C

By inserting Eq.~78! into Eq. ~79! we obtain

G@K~x8!#5 (
M50

`
1

M ! E2`

1`

¯E
2`

1`

exp~2^M &!^C̄0~2b1j!&¯^C̄0~2bMj!&db1¯dbM

3
1

~2p!M expH 2@z~ t2t0!#a (
m51

M

ubmuaJ E
2`

1`

¯E
2`

1`

)
m51

M

exp$ iK~hm!1 ibmhm%dh1¯dhM

5expS 2^M &1
1

2p E
2`

1`E
2`

1`

^C̄0~2bj!&exp$ iK~h!1 ibh2@z~ t2t0!#aubua%dh dbD , ~C1!

where

^C̄0~q!&5E
2`

1`

exp~ iqx!^C0~x!&dx ~C2!

is the Fourier transform of the average concentration field at initial time. In Eq.~C1! the double integral in the exponent ca
be expressed in terms of the average concentration field at timet, ^C(x;t)&5^^C(x;t)&&. We have

1

2p E
2`

1`E
2`

1`

^C̄0~2bj!&exp$ iK~h!1 ibh2@z~ t2t0!#aubua%dh db

5E
2`

1`

exp$ iK~h!%Fh
21$^C̄0~2bj!&exp$2@z~ t2t0!#aubua%%dh, ~C3!

whereFh
21 represents the inverse Fourier transformation from the Fourier space variable2b to the real space variableh. By

using the convolution theorem and comparing the result with Eq.~69! we obtain

1

2p E
2`

1`E
2`

1`

^C̄0~2bj!&exp$ iK~h!1 ibh2@z~ t2t0!#aubua%dh db

5E
2`

1`

exp$ iK~h!%^C~h;t !&dx. ~C4!

We insert Eq.~C4! into Eq. ~C1! and use Eq.~77!, resulting in Eq.~80!.

APPENDIX D

The derivation of Eq.~120! is based on the algebraic inequality

x ln x2x11.0 for xÞ1 and x ln x2x1150 fpr x51. ~D1!

The fractional diffusion equation~115! preserves the conservation of the total number of particles. By using Eq.~118!, we can
rewrite the fractional diffusion equation~115! in the form

]

]t
C~x;t !5

]

]x F n

a
xC~x;t !G2

D fract

2p E
2`

1`

dqE
2`

1`

dx8uquaC~x8;t !exp@ iq~x82x!#. ~D2!

We integrate Eq.~D2! term by term, with respect to the position of the particle, resulting in

E
2`

1`

dx
]

]t
C~x;t !5E

2`

1`

dx
]

]x F n

a
xC~x;t !G2

D fract

2p E
2`

1`

dxE
2`

1`

dqE
2`

1`

dx8uquaC~x8;t !

3exp@ iq~x82x!#, ~D3!

from which we come to

]

]t E2`

1`

C~x;t !dx52D fractE
2`

1`

dqE
2`

1`

dx8uquaC~x8;t !d~q!50, ~D4!
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and therefore

E
2`

1`

C~x;t !dx5E
2`

1`

C`~x!dx. ~D5!

By using Eq.~D5! we can express the stochastic potentialF@C(x;t)# in the form

F@C~x;t !#5E
2`

1`

C~x;t !H lnFC~x;t !

C`~x! G2C~x;t !1C`~x!J dx. ~D6!

From Eqs.~D1! and ~D6! we come to Eqs.~121!.
The derivation of Eqs.~122! is more complicated. We start by applying the fractional diffusion equation~D2! to the

stationary concentration profileC`(x)5^C(x)& given by Eq.~120!
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By using Eqs.~D2! and~D7! we can express the time derivative of the stochastic potentialF@C(x;t)# in the following form:

d

dt
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The first integral in Eq.~D8! can be computed step by step. We have
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We assume vanishing boundary conditions

lim
x→6`

xC~x;t !50. ~D10!

Note that for a concentration profile of the Le´vy type we haveC(x,t);uxu2(a11) asuxu→` with a.0 and thus this condition
is automatically fulfilled. We get
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By combining Eqs.~D8! and ~D11! we obtain
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from which we come to
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We use the identity
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By combining Eqs.~D13! and~D14! we can express the time derivative of the stochastic potential as the sum of two dif
terms. We have
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where
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In order to compute the termT2 we use the identity
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We come to
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and therefore the time derivative of the stochastic potential is given by
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From Eqs.~116! and from the well-known algebraic identity
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it turns out that
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From Eqs.~D20! and ~D22! and from the algebraic inequality

ln x2x11,0 for xÞ1 and lnx2x1150 for x51, ~D23!

we come to Eq.~122!.
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